Labeling graphs with two distance constraints

نویسندگان

  • Hsun-Wen Chang
  • Huang-Wei Chou
  • David Kuo
  • Chun-Liang Lin
چکیده

Given a graph G and integers p, q, d1 and d2, with p > q, d2 > d1 > 1, an L(d1, d2; p, q)-labeling of G is a function f : V (G) → {0, 1, 2, . . . , n} such that | f (u) − f (v)| > p if dG(u, v) 6 d1 and | f (u) − f (v)| > q if dG(u, v) 6 d2. A k-L(d1, d2; p, q)-labeling is an L(d1, d2; p, q)-labeling f such that maxv∈V (G) f (v) 6 k. The L(d1, d2; p, q)-labeling number of G, denoted by λ d1,d2(G), is the smallest number k such that G has a k-L(d1, d2; p, q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1, d2; p, q)-labeling number for general graphs and some special graphs. We also discuss the L(d1, d2; p, q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Product version of reciprocal degree distance of composite graphs

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

متن کامل

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

Constructing Graceful Graphs with Caterpillars

A graceful labeling of a graph G of size n is an injective assignment of integers from {0, 1,..., n} to the vertices of G, such that when each edge of G has assigned a weight, given by the absolute dierence of the labels of its end vertices, the set of weights is {1, 2,..., n}. If a graceful labeling f of a bipartite graph G assigns the smaller labels to one of the two stable sets of G, then f ...

متن کامل

Snakes and Caterpillars in Graceful Graphs

Graceful labelings use a prominent place among difference vertex labelings. In this work we present new families of graceful graphs all of them obtained applying a general substitution result. This substitution is applied here to replace some paths with some trees with a more complex structures. Two caterpillars with the same size are said to be textit{analogous} if thelarger stable sets, in bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008